The accurate detection of attention-deficit/hyperactivity disorder (ADHD) symptoms, such as inattentiveness and behavioral disinhibition, is crucial for delivering timely assistance and treatment. ADHD is commonly diagnosed and studied with specialized questionnaires and behavioral tests such as the stop-signal task. However, in cases of late-onset or mild forms of ADHD, behavioral measures often fail to gauge the deficiencies well-highlighted by questionnaires. To improve the sensitivity of behavioral tests, we propose a novel version of the stop-signal task (SST), which integrates mouse cursor tracking. In two studies, we investigated whether introducing mouse movement measures to the stop-signal task improves associations with questionnaire-based measures, as compared to the traditional (keypress-based) version of SST. We also scrutinized the influence of different parameters of stop-signal tasks, such as the method of stop-signal delay setting or definition of response inhibition failure, on these associations. Our results show that a) SSRT has weak association with impulsivity, while mouse movement measures have strong and significant association with impulsivity; b) machine learning models trained on the mouse movement data from “known” participants using nested cross-validation procedure can accurately predict impulsivity ratings of “unknown” participants; c) mouse movement features such as maximum acceleration and maximum velocity are among the most important predictors for impulsivity; d) using preset stop-signal delays prompts behavior that is more indicative of impulsivity.